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The instability characteristics of a horizontal stably stratified fluid layer being heated
from below, including its subsequent nonlinear evolution under steady and modulated
gravity, have been investigated by experiments and two-dimensional numerical
simulations. The critical condition at instability onset is also checked using linear
stability analysis. The fluid is contained in a horizontal test tank with an initial
stable solute gradient and a constant-temperature gradient imposed by heating from
below. Because of the non-diffusive boundaries, the vertical solute gradient slowly
decreases and, eventually, the layer becomes unstable. From the time of the onset
of instability, the critical solute Rayleigh number is determined. For the experiments
with modulated gravity, the tank is fixed onto a platform that oscillates vertically at
1 Hz with an amplitude of 10 cm. The experiment is designed such that no internal
wave mode of instability can be excited. The experimental results show that gravity
modulation destabilizes the system slightly by increasing the solute Rayleigh number
at onset by 8.4 % and causes the oscillation frequency at onset to increase by 32.6 %.
Linear stability analysis and two-dimensional numerical simulations for the steady
gravity case yield results that are in good agreement with the experiment. For the
gravity modulation case, linear stability results do not show any effect of gravity
modulation at the frequency of 1 Hz. Numerical simulation results do show increases
in both the onset solute Rayleigh number and the oscillation frequency; however,
their values are smaller than those obtained in the experiment. The characteristics
of the internal wave mode of instability are explored by numerical simulations of a
stably stratified solute fluid layer under gravity modulation. The interference effects
between the internal wave mode and double-diffusive mode of instabilities are studied
by imposing an adverse temperature gradient on the stratified layer.

1. Introduction
The stability of a horizontal fluid layer with an imposed temperature gradient

confined within rigid boundaries under gravity oscillation was first examined by
Gresho & Sani (1970) and by Gershuni, Zhukhovitskii & Iurkov (1970). Their results
show that the stability of the layer being heated from below is enhanced by gravity
modulation; but for the case of heating from above, the layer is destabilized. In
both cases, fluid motion at the onset of instability can be either in the synchronous
or the subharmonic mode. With the advent of orbiting space laboratories capable
of providing micro-gravity experiments in materials processing, there is a need to
consider the additional effect of mass diffusion on the instability mechanism of such
a layer. Saunders et al. (1992) studied the effect of gravity modulation on the stability
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of a horizontal double-diffusive layer. They considered a fluid layer of stress-free
boundaries with linear temperature and solute concentration distributions that would
generate instabilities either in the finger or the diffusive mode. For the diffusive case,
the instability regions at higher amplitudes of gravity modulation appear in a series
of resonant bands in which the instabilities oscillate alternately in the subharmonic
and synchronous mode. However, within the fundamental band of instability, the
oscillatory onset of convection is in complex conjugate pairs.

Experiments on the response of Rayleigh–Bénard convection to gravity modulation
were carried out by Rogers et al. (2005). Their interest is in the study of the complex-
ordered patterns of convection generated under such conditions. The experiments
were carried out in a circular horizontal layer of pressurized carbon dioxide (CO2)
with heating from below. Their linear analysis and nonlinear calculations included
cases with heating from above. They noted that for such cases, internal waves can
be excited, and when these modes are resonantly coupled to the modulated gravity,
instability can be generated.

Shirtcliffe (1967, 1969) carried out the first experimental investigations of double-
diffusive instability by heating a stably stratified sugar solution from below. The
thermal and solutal Rayleigh numbers at onset were determined by using the measured
sugar gradient and the computed temperature profile. The oscillation of the instability
was determined by differential temperature measurements. His results agreed well with
the linear stability predictions of Nield (1967). Wright & Loehrke (1976) used a test
tank with porous metal boundaries at the top and bottom through which both salt
and heat could diffuse. Their experimental results agreed well with those predicted by
the linear stability theory for a fluid layer with constant values of temperature and
solute concentration at the two boundaries.

For the present experiments, it is difficult to adapt the apparatus used by Wright &
Loehrke (1976) to be mounted on an oscillating platform. Instead, we use the fact
that the concentration gradient decays slowly owing to the non-diffusive top and
bottom boundaries to help us to determine the critical state. We fill a horizontal
tank with stably stratified solute solution, and then apply an adverse temperature
gradient that is subcritical with respect to the initial solute gradient. We wait for the
slow decay of the solute gradient to render the fluid layer unstable. This procedure
is equally applicable for the steady and modulated gravity cases. In the following, we
first describe the experimental apparatus and procedure, then the experimental results
including the methods we used to determine the oscillation frequency at onset, followed
by a short section on the linear stability results for the experimental nonlinear solute
distribution. Next, we present the methods and results of two-dimensional simulations
of the experiments, including the time rate of change of the total kinetic energy of the
fluid as it passes through the onset stage to the fully saturated nonlinear state. Lastly,
we present simulation results that illustrate the interference between the internal wave
mode of instability and the double-diffusive instability.

2. Experimental apparatus and procedure
Experiments were conducted in a shallow tank with interior dimensions of

10.8 cm (W ) × 1 cm (H ) × 5.4 cm wide. For flow visualization and particle image
velocimetry (PIV) application purposes, the tank is transparent except for the bottom.
All sidewalls are made of Plexiglas. The top of the tank is a sealed Plexiglas box
with a 0.1 cm thick sapphire bottom plate for heat transfer purposes. Temperature
in the box is maintained constant by circulating transparent glycerine–water solution
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from a constant-temperature bath. The bottom boundary of the tank is made of a
1.27 cm thick copper plate with sealed passages to allow the circulation of constant-
temperature fluid from another bath. The temperature of the copper plate is measured
by an embedded thermocouple. The temperature of the sapphire plate wetted by the
test fluid is determined by heat transfer calculation using the measured temperature
and volume flow rate of the glycerine–water solution and the temperature of the
bottom wall.

An oscillating platform is used to impart gravity modulation in the vertical direction.
By using a Scotch yoke mechanism, the rotary motion of a flywheel driven by a d.c.
motor is transformed into the sinusoidal vertical oscillation of a vertical shaft, to
which a platform is firmly attached. The vertical stroke is 10 cm. The test tank
and a digital movie camera are mounted on the platform. The desired frequency of
gravity modulation is controlled by adjusting the current input to the d.c. motor,
and the amplitude of the modulation is proportional to the square of the frequency.
When the platform is oscillating at 1.0 Hz, the maximum amplitude of the platform
acceleration is 0.41g, where g is gravity at sea level. An accelerometer is attached to
the platform so that its acceleration is continuously monitored during the experiment.
All the signals from the thermocouples and the accelerometer are streamed into a
personal computer through hardware configuration. These signals are then displayed,
processed, and saved with a code developed in LabVIEW.

For flow visualization and PIV purposes, the test fluid is seeded with 10 µm
polycrystalline particles. The light from a Coherent 4 W laser is rendered into a sheet
approximately 1 mm in thickness by a cylindrical lens and is then deflected downward,
illuminating the mid-plane of the test tank. The motions of the particles in this plane
are captured by the digital camera and streamed into a Macintosh computer as movie
clips. From these clips, streaklines can be constructed, and fluid velocities can be
evaluated by PIV software.

The following three factors are considered when determining the initial solute
gradient of the fluid. (i) The gradient must be large enough so the fluid layer is
subcritical under the imposed �T . (ii) The onset of double-diffusive instability occurs
at approximately 10 ◦C �T in order to limit the effect of viscosity variation within
the fluid. (iii) The initial density gradient should be stable with respect to internal
wave instability when it is under a gravity modulation of 1 Hz. For a continuously
stratified fluid, Sekerzh-Zen’kovitch (1983) has shown by linear stability analysis that
parametric instability of such a layer is excited when it is oscillated at a frequency
less than 2N , where N is the buoyancy frequency. Benielli & Sommeria (1998) carried
out experiments on parametric instability in continuously stratified salt solution by
vertical oscillation. The value of 2N for the fluid is 0.462 Hz. They showed that
for oscillation frequencies larger than 0.462 Hz, no instability is observed up to an
oscillation amplitude of ∼0.1g. However, when the forcing frequency is increased to
3.47 Hz, the free-surface mode of instability is excited. When the frequency is reduced
to 0.432 Hz < 2N , internal waves in the subharmonic mode are excited.

With these considerations in mind, we use 0.0 wt % and 2.0 wt % ethanol–water
solutions to establish the stratified fluid layer. The thermophysical properties of the
fluid layer are evaluated for the mixed 1.0 wt % ethanol–water solution at 22.5 ◦C.
The kinematic viscosity ν = 1.005 × 10−2 cm2 s−1; thermal and solutal diffusivity
are κT =1.429 × 10−3 cm2 s−1 and κS = 1.208 × 10−5 cm2 s−1, respectively; the thermal
expansion coefficient is βT = −ρ−1

0 ∂ρ/∂T = 2.330 × 10−4 K−1 and the solutal
counterpart is βS = −ρ−1

0 ∂ρ/∂S = −1.863 × 10−3 %−1 (Landolt & Bornstein 1989);
the Prandtl number Pr = ν/κT =7.033, and the Lewis number Le = κT /κS = 118.3.
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Figure 1. Solute distributions at · · ·, t = 0, −−−, 86 min, and −−−−−, 95 min into the
experiment.

From these values, the thermal Rayleigh number RaT = gβT �T H 3/κT ν and the
solute Rayleigh number Ras = gβS�SH 3/κT ν can be evaluated, where �T and �S

are the temperature and solute differences between the bottom and the top of the
tank. For our choice of the initial stratification, no internal Faraday waves can be
excited. However, in the numerical simulations, we selected an example with gravity
modulation less than 2N and show the interactions between the internal Faraday
waves and double-diffusive instability.

To establish the solute gradient, the lower half of the test tank is first filled with
pure water. Then 2.0 wt % ethanol–water solution is slowly injected onto a thin slat
of balsa wood floating on the water in order to minimize mixing. When the filling is
complete, the balsa wood is carefully removed and the top transparent heat transfer
box is secured to the test tank by external clamps. Then the filled tank is left standing
for 30 min to allow diffusion of ethanol to smooth out the gradient. At this time, a 10 K
temperature difference is imposed across the tank. This marks the beginning of the
experiment designated as t = 0. Recorded data indicate that the temperatures of the
top and lower boundaries reach their steady state values in less than 1.5 min after
the circulating baths are activated. A linear temperature distribution is established
within the test tank in less than 3 min. The one-dimensional diffusion equation is
numerically integrated to determine the time evolution of the solute distribution within
the fluid layer using two different estimates of the solute distributions immediately
after filling. One is the step distribution assuming perfect filling; the other is a three-
equal-layer distribution, with the top and the bottom layers at 2.0 wt % and 0.0 wt %
ethanol–water solutions and the middle layer with a linearly varying distribution to
account for the mixing effect. The predicted solute distributions resulting from these
two different initial conditions are nearly equal to each other. Quantitatively, the
relative error of the predicted values of �S based on the two initial conditions is within
5% at 90 min after the start of the experiment. Since the three-layer initial condition
takes into account the mixing effect, we use it to predict the solute distribution
in the tank up to the time of onset of instabilities. The solute distributions at
t = 0, 86min and 95 min into the experiment are shown in figure 1. In the experiments,
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Steady gravity

Exp �T K−1 RaT tonset min−1

H1 10.24 163 080 99.0
H2 10.16 161 540 98.0
H3 10.17 161 770 92.0
H4 10.08 160 310 90.0
H5 10.12 160 910 91.0
H6 10.17 161 770 99.0
Avg 10.16 161 560 94.8

Gravity modulation

Exp �T K−1 RaT tonset min−1

H7 10.24 162 790 90.0
H8 10.21 162 360 87.0
H9 10.27 163 230 91.0
H10 10.07 160 170 82.0
H11 10.08 160 310 81.0
H12 10.13 161 040 87.0
H13 10.02 159 290 82.0
Avg 10.15 161 330 85.7

Experimental onset characteristics
RaT RaS fonset (Hz) λ

Steady gravity 161 560 125 540 0.043 0.82–1.06H
Gravity modulation 161 330 136 140 0.057 1.39–2.26H

Table 1. Experimental conditions and results.

instability onset was observed at 80–100 min. The buoyancy frequency estimated for
the stratification at t = 0 is 0.37 Hz based on the solute gradient in the mid-section
of the fluid layer. Thereafter, the image of the illuminated particles in the fluid layer
displayed on the computer screen is monitored for onset of instability and subsequent
motion. For experiments with gravity modulation, the oscillating platform is activated
at the same time as �T is imposed.

3. Experimental results
3.1. Steady gravity

Six experiments were carried out under steady gravity. The test conditions and results
in terms of the �T across the tank, the time of instability onset, and the Rayleigh
numbers RaT and RaS corresponding to the mean time of onset are given in table 1.
The average value of RaT is 161560 with variations of ±1.0 %, and the mean onset
time is 94.8 min ± 5.0 %. Based on the solute difference �S at 94.8 min as computed
by the diffusion equation, the critical RaS = 125 540 ± 3.5 %.

The time of instability onset is first determined approximately by noticing the onset
of motion of the particles in the fluid layer as recorded in the flow-visualization movie.
Then the recorded movie frames during that time period are processed by the PIV
program to find the vertical velocity component at a point. Such data obtained for
experiment H5 are shown in figure 2 for a 5 min period. The time when the random
oscillations of the vertical velocity are changed to a growing oscillation of constant
frequency is defined as the time of instability onset. For this case, the onset time is
91 min after the initial state.
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Figure 2. Vertical velocity at a point in experiment H5 under steady gravity. Instability
onset is at 91 min.

The instability onset process is illustrated by streakline images taken from
experiment H6, for which the critical time of onset of instability is at 99 min. A
sequence of ten streakline images from 98 to 109 min is shown in figure 3. These
images show the central 5 cm section of the test tank. The time interval between
images is 1min, except for images 8, 9 and 10, where the interval is 2 min. The
exposure time is 6 s for images 1 and 2, and 4 s for all others. There is no motion in
image 1, but in image 2, fluid motion in the form of five vortices can be clearly seen
in the lower half of the tank. One minute later, image 3, vortices now appear in the
upper half of the tank, rotating at lower speeds than those in the lower half, and there
are more vortices in the lower half. Onset of instabilities is expected to occur near the
two horizontal boundaries because of the lower solute gradient near the non-diffusive
boundaries. However, because of the variable viscosity of the fluid, the higher local
thermal Rayleigh number near the warmer lower boundary causes earlier onset of
the instability in the lower part of the tank. These vortices are the result of double-
diffusive instability rather than the result of Rayleigh–Bénard instability in the two
nearly constant solute layers adjacent to the horizontal boundaries. In the latter case,
the thickness of each of these layers must be �0.33 cm. Solute stratification in these
layers of such thickness cannot be ignored (figure 1). At 102 min, image 5, two rows
of vortices fill the entire 5 cm section of the tank with wavelength λ= (0.91–1.09)H .
Then the vortices grow bigger as seen in image 6, while some of the stacked vortices
at the left-hand end start to merge into one large cell. This merging process continues
until 109 min, image 10, when the solute gradient vanishes owing to mixing and the
flow pattern becomes that of Rayleigh–Bénard convection.

For a stably stratified fluid with heating from below, the instability is in the
oscillatory mode when RaS exceeds a value based on the Prandtl and Lewis numbers
of the fluid. For the present test fluid, the limiting RaS ≈ 0.1. Since the experimental
RaS ≈ 120 000, oscillatory onset is expected. For the present case, each of the vortices
shown in figure 3 is in oscillatory motion that is consisted of an oscillatory rotation
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Figure 3. For caption see next page.

and, to a lesser extent, a lateral translation of the vortex as a whole. This can be
clearly seen in figure 4, in which the velocity vectors are shown in 5 s intervals starting
at the second image (99 min) of figure 3 for 25 s, approximately one period. The vortex
just to the right of the 10 mm mark, for instance, starts out with clockwise rotation,
slows down and assumes counterclockwise rotation in images 3 and 4 (10–15 s), and
then switches back to clockwise rotation in image 6 at 25 s. At the same time, there
is a slight left–right oscillation of the vortices as a whole. The results of numerical
simulations in § 5, however, show only rotational oscillation of each individual vortex
without any lateral oscillations.

In order to obtain a quantitative measure of the frequency of the oscillatory
nature of the flow field, we estimate the power spectrum of the time sequence of the
vertical component of the velocity. The time sequence is obtained by analysing the
experimental images using the PIV program. The sequence is usually ∼5–10 min long
and is sampled every second. Taking the time sequence as a discrete-time signal, we
estimate its power spectrum using the periodogram, the modified covariance method,
and Burg’s method; see Hayes (1996) and Proakis & Manolakis (1996). The dominant
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Figure 3. Sequence of streakline images showing the onset process in experiment H6 under
steady gravity. Image 1 is at 98 min; subsequent images are shown at 1 min intervals except
for the last two images which are shown at 2 min intervals. Exposure time is 6 s for images 1
and 2, and 4 s for all the rest.

frequency is determined according to the overall behaviour of the power spectra from
the three estimations (figure 5). A frequency is considered as the dominant frequency
when at least two of the three methods yield the same frequency.

This procedure is applied to time sequences of the vertical velocities at 70 discrete
points in the tank, which spanned the range of x = (0.25–0.75)W and y = 0.25H

in each experiment. These sampling points are schematically shown in figure 6. In
the same figure, we also locate the three sampling points (indicated by +) for the
simulation results to be discussed in § 5. The results obtained from all sampling
points where instability has occurred for all six experiments are summarized in
figure 7 in which the dominant frequency of the instability motion fonset is shown.
The statistical distribution of the frequencies is shown in figure 8, together with
the Gaussian distribution curve. From this result, we determine fonset = 0.043 Hz.
For a double-diffusive fluid layer with linear temperature and solute profiles and
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Figure 4. Velocity vectors at 5 s intervals starting at image 2 of figure 3 showing the
oscillatory motion of the vortices under steady gravity. Length scale in millimetres.

free dynamic boundaries, the onset frequency predicted by linear stability theory is
[(1 − Le−1)/3(Pr + 1)]1/2N , where N is the buoyancy frequency (Turner 1973). Using
the �S value at the time of onset, the predicted frequency is 0.053 Hz, indicating that
the solute gradient in which the instability is occurring is lower than the mean solute
gradient in the tank.

3.2. Gravity modulation

Before the experiments under gravity modulation are carried out, we first measure the
gravity variations actually experienced by the oscillating platform. The accelerometer
data of the cyclic motion are shown in figure 9. Because of a slight asymmetry in the
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Figure 5. Power spectrum estimates by three different methods of a sample time sequence of
the vertical velocity taken from experiment H2.

t = 0
t = ∆t

t = 2∆t

t = 5–10 min

Figure 6. Schematic representation of velocity sampling points for the experiments (�) and
for the numerical simulations (+).

harmonic motion of the platform, the acceleration of the platform shows noticeable
irregularity. In addition to the asymmetry, now much exaggerated, there is a ripple
in the acceleration at the apex of the down-stroke owing to the backlash in the
speed-reduction gearing of the d.c. motor. The effect of these deviations from the
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Figure 8. Statistical distribution of the dominant frequencies from all six experiments under
steady gravity.

ideal sinusoidal variations of the acceleration will be examined in our numerical
simulations.

Seven experiments were conducted with gravity modulation and the results are
also summarized in table 1. With essentially the same RaT as in the steady gravity
case, the average time for instability onset is 85.7 min ± 5 %, resulting in a higher
average RaS =136 140, an 8.4 % increase from the steady gravity case. The fluid layer
is destabilized by gravity modulation.
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Figure 9. Gravity variations as experienced by the oscillating platform. Measured values
shown in dotted line; ideal modulation shown in solid line.

There are also differences in the fluid motion after the onset of instabilities. Among
the seven experiments conducted, the streakline images from two of them show the
two-layer cellular structure at onset similar to those in experiments under steady
gravity; but in this case, the convection cells are elliptical with wavelength λ=
(1.4 – 1.9)H . Also, they evolve into the one-layer structure in a shorter time than in
the steady gravity case. In the other five experiments, the onset motion is in large
vortices that span the entire height of the tank. This is illustrated in a sequence of 10
streakline images starting at 86 min and ending at 95 min from experiment H8 shown
in figure 10. The time interval between images is 1 min; the exposure time is 6 s for
images 1 and 2, and 4 s for the rest. Motion started at the second image, 87 min, in
a large vortex near the right-hand end. More and more vortices are formed, and by
image 5, the entire 5 cm span is filled with five vortices. Thereafter, there is merging
among the cells in the mid-section of the tank. The measured wavelength at onset is
λ=(1.39 − 2.26)H .

The oscillations of the cell rotation as well as the lateral oscillations of the cells
are illustrated by the velocity vectors shown in figure 11. Starting with image 5
of figure 10, the velocity vectors are shown every 5 s for a total duration of 20 s,
approximately one cycle of oscillation. For the gravity modulation case, the lateral
oscillations are of larger amplitude than the steady gravity case. Looking at the pair
of vortices at the right-hand end in image 1, the pair moves to the left ∼5 mm and
keeps the same individual rotation at 5 s, image 2. At 10 s, image 3, they move back
to their original position but with opposite rotation. At 15 s, image 4, the pair moves
to the left again with no change in the rotation. Finally at 20 s, image 5, the pair
returns to their original position and their original rotation.

Following the same procedure as in the steady gravity case, we obtain the most
probable frequency of oscillation at the onset of instabilities by analysing the time
sequence of the vertical velocity. We note here that the vertical velocity grows faster
and oscillates at a higher frequency than that in the steady gravity case. The statistical
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Figure 10. For caption see next page.

distribution of the frequency data obtained from all seven experiments is shown in
figure 12. The distribution curve is much broader than the steady gravity case and
the most probable value is fonset = 0.057 Hz, a 32.6 % increase from the steady gravity
case. There is a small peak at the most probable fonset for the steady gravity case.

4. Linear stability theory results
The linear stability analysis is applied to study the effect of gravity modulation

on the stability of a horizontal double-diffusive layer. The layer is confined
within two rigid boundaries with constant stable solute gradient and unstable
temperature gradient. The spectral-Galerkin method is used to transform the linear
perturbation equations into a system of time-periodic ordinary differential equations.
The Chebyshev expansion method of Sinha & Wu (1991) is applied to obtain the
Floquet transition matrix. This method has been successfully used by Chen & Chen
(1999) to study the effect of gravity modulation on thermal convection in a vertical
slot.
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Figure 10. Sequence of streakline images showing the onset process in experiment H8 under
gravity modulation. Image 1 is at 86 min; all subsequent images are shown at 1 min intervals.
Exposure time is 6 s for images 1 and 2, and 4 s for all the rest.

In order to obtain quantitative predictions to compare with experimental results,
the same methodology is applied for an initial sinusoidal solute distribution

S = S0 − (�S/2) sin[π(y/H − 12)] for 0 � y � H.

This expression gives a good approximation of the nonlinear solute distribution due
to non-diffusive boundary conditions at the top and the bottom of the tank (see
Tanny, Chen & Chen 1995). The value of �S is chosen to fit the S-distribution in the
tank at instability onset. In figure 13, we show the marginal stability curves for a layer
with linear and sinusoidal solute distributions at the same RaS = 126 000. The same
results apply to steady gravity and modulated gravity at 1 Hz with amplitude 0.41g.
Saunders et al. (1992) have shown that under gravity modulation at low frequency
and large amplitude, there are resonant instability bands. However, under the present
experimental gravity modulation conditions, linear stability theory yields the same
marginal stability conditions as those for steady gravity, but the instability onset
consists of a complex conjugate pair. For the linear solute distribution, the critical
thermal RaT is 116 200. For the sinusoidal S-distribution, it becomes more stable,
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Figure 11. Velocity vectors at 5 s intervals starting at image 5 of figure 10 showing the
oscillation of the vortices under gravity modulation. Length scale in millimetres.

with critical RaT = 158 000, frequency of oscillation fonset = 0.045 Hz, and critical
wavenumber k = 5.93 under steady gravity. These results are summarized in table 2.
The corresponding perturbation streamlines at onset show two rows of counter-
rotating vortices all along the tank. These predictions agree very well with the
experimental results under steady gravity. However, for the gravity modulation case,
the linear stability theory predictions indicate the fluid layer is slightly more stable
than the experimental results. The possibility of onset of subcritical instability is
examined by numerical means in the next section.

5. Numerical simulations
Two-dimensional nonlinear simulations are carried out for the instability problem

we studied in the experiments. It is assumed that a Newtonian fluid with variable
viscosity is contained in a two-dimensional rectangular domain of width W and height
H with aspect ratio A= W/H = 11. The temperatures of the top and bottom walls
are kept at constant at Tt and Tb(>Tt ) while the sidewalls are held adiabatic. All walls
are non-diffusive with respect to the solute. The origin of the x, y (horizontal-vertical)
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Figure 12. Statistical distribution of the dominant oscillation frequencies from all seven
experiments under gravity oscillation.
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Figure 13. Marginal stability curves based on linear stability analysis: �, sinusoidal profile;
×, linear profile.

coordinate system is at the lower left-hand corner of the tank (figure 14). The gravity
vector points downward and its magnitude oscillates with non-dimensional amplitude
g1 and frequency Ω about a mean g:

g = − jg(1 + g1 cos Ωt). (1)

The fluid is assumed to be Bussinesq and its density is linear both in temperature
and solute concentration, ρ = ρ0[1 − βT (T − T0) + βs(S − S0)]. The non-dimensional
equations of continuity, momentum, energy conservation and solute conservation
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RaT RaS fonset (Hz) λ

Linear stability analysis
Steady gravity 158 000 126 000 28.29/0.045 1.06H
Gravity modulation 158 000 126 000 – 1.06H

Numerical Simulations
Steady gravity 161 560 122 560 28.27/0.045 0.82–1.00H
Ideal gravity modulation 161 560 122 560 28.27/0.045 0.82–1.00H
Actual gravity modulation 161 560 124 330 30.66/0.049 0.82–1.00H

Table 2. Onset conditions based on linear stability analysis and numerical simulations.
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x0
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Figure 14. The coordinate system.

written in terms of streamfunction ψ and vorticity ξ are

∂2ψ

A2∂x2
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, (5)

where u = ∂ψ/∂y, v = −∂ψ/A∂x and ξ = ∂v/A∂x − ∂u/∂y. The scaling quantities
to render these equations non-dimensional are H for the vertical length, AH
for the horizontal length, H 2/ν for time, and ν/H for velocity. For the gravity
modulation term, ωm is the non-dimensional modulation frequency. The non-
dimensional temperature θ and solute concentration C are defined as θ = (T − T0)/�T

and C = (S − S0)/�S, where �T = Tb − Tt the imposed temperature difference and
�S = 2 %. T0 is the mean of the boundary temperatures, and S0 = 1 %. The kinematic
viscosity ratio is approximated by fν(θ) = 1 − 0.24888θ , which corresponds to the
viscosity variation due to the actual temperature difference in experiments.
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The boundary conditions are

ψ =
∂ψ

∂x
= 0,

∂θ

∂x
= 0,

∂C

∂x
= 0 at x = 0, 1, (6)

ψ =
∂ψ

∂y
= 0, θ = 0.5, −0.5,

∂C

∂y
= 0 at y = 0, 1. (7)

The initial conditions are the quiescent state at the uniform θ = 0.0 and the solutal
distribution at t =0 as shown in figure 1. In our notation, positive RaT is destabilizing
whereas positive RaS is stabilizing.

For a better understanding of the energetics during the period of instability onset,
we calculate the substantial derivative of the kinetic energy of the fluid particle by
forming the inner product of the velocity with the momentum equation. For simplicity,
only the case of constant viscosity is considered. The time rate of change of the kinetic
energy at any point in the flow field is

D

Dt

(
u2 + v2

2

)
= −

(
u

∂p

A∂x
+ v

∂p

∂y

)
+ (u∇2u + v∇2v) + v

RaT

Pr
θ − v

RaS

Pr
C, (8)

in which the four terms on the right-hand side are the pressure work, the shear work,
the thermal buoyancy work and the solutal buoyancy work, respectively.

For the numerical solution of the equations above, the time derivatives are
discretized by the central-difference method, the convection terms by the Arakawa
(1966) nine-point method, the diffusion terms by the DuFort–Frankel method (DuFort
& Frankel 1953), and the Poisson equation, (2), by a fast Fourier solution technique
using the fourth-order-accurate nine-point finite-difference scheme of Houstis &
Papatheodorou (1979). The boundary vorticity is determined by Thom’s rule (Roache
1982) which has been shown to be second-order accurate by Huang & Wetton
(1996) and Napolitano, Pascazio & Quartapelle (1999). The kinetic energy expression,
equation (8), and the extra terms due to variable viscosity in (3) are discretized
by central-difference approximation. The overall scheme is temporally and spatially
second-order accurate. A detailed validation of the code based on this scheme is
presented in Chan, Yu & Chen (2004) for a thermal convection problem in a vertical
tank. It is further validated by applying this code to a double-diffusive problem
considered by Ghorayeb & Mojatabi (1997). They studied the onset of double-
diffusive convection in a vertical tank with equal and opposite buoyancy forces due
to horizontal thermal and solute gradients. For a square cavity, they found by direct
numerical simulation that subcritical convection begins when the Rayleigh number
Ra � 676 for a fluid with Pr =1 and Le =11. Using the current method with 33 × 33
grid points, the onset Rayleigh number is between 679.5 and 679.7. When the grid
points are increased to 65 × 65, the critical Rayleigh number is between 675.99 and
676.00.

For our numerical simulations, computations are usually run with 513(x) × 65(y)
grid points and time step �t = 0.0001, with continuous random perturbations of
magnitude 5 × 10−6 superposed on the flow variables. This grid size is optimal for
achieving a convergent solution and yet affordable computation time. The numerical
stability criteria (Courant–Friedrichs–Lewy conditions) are checked at every time step
to eliminate artificial numerical oscillations. The fluid layer is considered stable if
there is no increase in |ψ | when calculations are carried out to t =250. The random
perturbation is generated by a built-in function, which uses the Prime Modulus M
Multipicative Linear Congruential Generator. The seed is set based on time. For
the steady gravity case, we have experimented with different ways of perturbing
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Figure 15. Time evolution of the streamfunction |ψ | under steady gravity showing instability
onset at t =58.

the system: (i) perturbations on ψ , θ and C; (ii) perturbations on ξ , θ and C; and
(iii) perturbations on ξ, ψ , θ and C with three different seeds or times. The predictions
of the onset times are between 58.0 and 58.8. Within this error limit, it does not
seem to matter which set of flow quantities are perturbed or which seed number is
used. In the following, the computed results of instability onset and the subsequent
nonlinear evolution to the final state of thermal convection for steady gravity, the
ideal sinusoidal gravity modulation, and the actual experimental gravity modulation
cases are presented. All these results were obtained with initial random perturbations
assigned by method (iii) presented above with the same seed number.

5.1. Steady gravity

In numerical simulations, the time of onset of instability is defined as the time when
|ψ | � 0.01. This is usually accompanied by the growth and onset of oscillations of
|ψ | and the first appearance of streamline contours in the flow field. The value of
|ψ | is the mean of the values at the three sampling points (2.75, 0.25), (5.5, 0.25) and
(8.25, 0.25) shown in figure 6. The time of instability onset is not too sensitive to
the exact value of the critical |ψ |. Had we selected the value to be 0.001, the onset
time would be shortened by approximately 2 min resulting in a 1.6 % increase in the
critical solute Rayleigh number. The experimental scatter is about 10 min. The time
evolution of |ψ | for the steady gravity case is shown in figure 15 in non-dimensional
units. We note here that the non-dimensional time unit is 99.5 s. It can be seen that
time of onset is t = 58 (=96.2 min). At this time, |ψ | starts to grow from a near-
zero value to oscillations of ever-increasing magnitudes. A sequence of 9 streamline
images is shown in figure 16 to illustrate the onset process with image 1 at t = 58.
Each of the subsequent images, except for image 9, are presented at 1min intervals
to facilitate comparison with the experimental streaklines shown in figure 3. For
the last two images, the interval is 4 min. The streaklines in figure 3 are taken from
flow-visualization data in the central 5 cm of the test tank. For image 1, �ψ = ±0.010,
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Figure 16. Sequence of streamline patterns illustrating the development of instability onset
under steady gravity. Image 1 is at onset, t = 58 (96.2min). The time interval between images
is 1 min except for image 9 which is 4 min after image 8. Values of �ψ = ±0.01 for images 1
to 4; ±0.03 for image 5; ±0.15 for image 6; ±0.30 for image 7; ±0.5 for image 8; ±0.8 for
image 9.

approximately 2 × 103 times the level of the random noise in the flow field. Similar to
the experiment, the streamline images show that the onset of instability takes place
first in the lower half of the tank owing to effect of variable viscosity. Cellular motion
in the upper half of the tank can be seen 1 min later, and by the third minute the tank
is filled with two rows of counter-rotating vortices with the stronger ones in the lower
half. The simulation results show only oscillatory rotation of the convection cells,
but no lateral oscillations. The merging of smaller vortices into larger ones occurs
in image 6. The merging process continues, resulting in a row of nearly equal cells
of Rayleigh–Bénard convection all along the tank in image 9, which is 11 min after
the onset of instabilities. This process is generally similar to the experimental results
shown by the streaklines in figure 3.
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Figure 17. Time evolution of the streamfunction |ψ | under actual gravity modulation
showing instability onset at t = 55.5.

The critical wavelength is determined by the cells in images 3, 4 and 5 to be
λ= (0.82 − 1.00)H , which agrees well with (0.91 − 1.09)H found from the experiment.
The solute Rayleigh number determined from the time of onset is RaS =122 560. The
power spectrum of the vertical velocity at the three sampling points yields, as expected,
a narrow distribution of frequencies from (0.041 − 0.049) Hz, with the peak value at
fonset = 0.045 Hz, which compares well with the experimental value of 0.043 Hz. The
onset characteristics, together with those from the ideal gravity modulation and the
actual gravity modulation to be discussed below, are given in table 2.

5.2. Ideal and actual gravity modulations

For the simulations, we set the experimental values g1 = 0.41 and ωm = 628.3 (=1 Hz).
The results for the ideal gravity modulation show no discernible difference in the onset
conditions from those for the steady gravity case. As shown in table 2, the critical
solute Rayleigh number, the critical wavelength, and the frequency of oscillation at
onset are all the same as those obtained for the steady gravity case. The simulation
results are in agreement with the linear stability theory that sinusoidal oscillations at
this high frequency do not affect the stability of the layer. However, in the nonlinear
development of the flow, the merging of the initial two-cell structure into a single-cell
structure is slightly accelerated over the steady gravity case.

For the actual gravity modulation case, we replace the sinusoidal gravity variations
in the computations by the actual measured acceleration shown in figure 9. The time
evolution of |ψ | is shown in figure 17. The onset of instability is now advanced to
t = 55.5 (=92.0min). The corresponding critical solute Rayleigh number is 124 330, a
1.4 % increase from the steady-gravity case. The initial growth of |ψ | is much slower
than that in the steady-gravity case. Also, there are high-frequency oscillations in |ψ |
at the peak of each cycle, reflecting the ripple in the acceleration of the platform.
The instability onset is always marked by the appearance of two rows of vortices. In
no instance do we encounter the onset in terms of a row of large convection cells
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spanning the entire height of the tank as seen in the experiments. The oscillation
frequency at onset is 0.049 Hz, an increase of 8.9 % from the steady-gravity case.
Despite the departure from the ideal gravity modulation, the subsequent nonlinear
evolution is similar to the steady gravity and ideal modulation cases. From table 1, the
experimental results show an 8.4 % increase for the critical solute Rayleigh number
and a 32.6 % increase for the onset frequency between the steady- and modulated-
gravity cases. In a two-dimensional flow, the non-symmetrical gravity-modulation
effect cannot explain the differences in the changes observed in the experiments. This
leads us to conjecture that the convective flow in the gravity-modulation case may be
three-dimensional.

To check on such possibilities, we evaluate the relative error [|∂u/∂x +
∂v/∂y|/{|∂u/∂x| + |∂v/∂y|}] from the experimental velocity measurements at 980
locations evenly distributed in the image area at 4 min after instability onset in
experiments H6 (steady gravity) and H8 (modulated gravity). These values were
averaged to obtain a space-averaged error. Four more such averages were obtained
at four subsequent times 5 s apart. The five space-averaged values vary between
0.553 and 0.580 for the steady-gravity case, and between 0.566 and 0.612 for the
modulated-gravity case. These results indicate that the motion in the fluid layer after
onset is three-dimensional for both cases. The difference in the results of simulation
and experiment cannot be explained by this conjecture.

5.3. Subcritical instability for the ideal gravity-modulation case

The results of nonlinear analysis of double-diffusive convection by Huppert & Moore
(1976) suggest that as the Lewis number is increased, there is the possibility of
subcritical onset of instability in the steady convection mode. We have examined
the possibility of such subcritical instability in an infinite horizontal fluid layer
with the same stable sinusoidal solute distribution as that considered in § 4 with
heating from below under ideal gravity modulation. The nonlinear instability analysis
is done by simulating the evolution of the finite perturbation flow variables (ψ1,
ω1, T1, C1) from the basic solution. Computations are carried out for a unit cell
whose width is the critical wavelength. Periodical boundary conditions are applied in
the horizontal direction to simulate the infinite layer. The critical thermal Rayleigh
number for instability onset is found to be 157 885, essentially the same value as
the linear stability result for steady and ideally modulated gravity. Starting with the
onset condition, computations are made at thermal Rayleigh numbers lower than the
critical, no convective state is found.

6. Energy considerations
6.1. Steady gravity

We examine the time rate of change of the total kinetic energy, the summation of
all values in the tank, in the instability onset process. In these calculations, the fluid
is assumed to be of constant viscosity to avoid excessive computation time. The
results for the steady-gravity case are presented in figure 18 in which the kinetic
energy term and all the work components are shown for a 2min period from the
time of instability onset at t = 58.2 (97 min). The magnitude of the pressure work
term is very small and is magnified ten times in the graph for a clearer view. It
can be seen that all terms are growing in an oscillatory mode after instability onset.
As the convective motion moves a parcel of fluid upward (downward) imparting
positive (negative) thermal buoyancy work, a concomitant negative (positive) solute
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Figure 18. Oscillatory growth of the work components contributing to the time rate of change
of kinetic energy at instability onset under steady gravity. Pressure work is amplified by a
factor of 10 for a clearer view.

buoyancy work is generated. As a result, the thermal buoyancy work is exactly out of
phase with the solute buoyancy work. The sum of the buoyancy work terms is mostly
dissipated by the shear work, with a small remainder that is responsible for the gradual
increase in the magnitude of D(KE)/Dt . It is expected that all these terms should
exhibit oscillations at twice the frequency of the instabilities at onset since they are
all products of perturbation quantities. Power spectrum estimations show that, after
t = 59, approximately 1 min after instability onset, all terms are oscillating at 0.090 Hz,
twice the value of fonset = 0.045 Hz. However, the thermal and solutal buoyancy terms
oscillate initially at 0.044 Hz, but increase to twice the value at 0.090 Hz after t = 59,
while the kinetic energy and the shear work oscillate at 0.090 Hz for all times from
the onset of instabilities. It shows that there is a time lag of approximately 1 min for
both θ and C from their respective diffusive states, resulting in the delayed response
in frequency doubling.

In order to follow the evolution of these energy terms developing into the final
thermal convection state, we extend the same plot to t = 69 (∼15 min) in figure 19.
The range of the ordinate is expanded to ±6 × 108 to accommodate the explosive
growth of the work terms. To make the graph easier to read, the D(KE)/Dt (pressure
work) is shifted upward (downward) by 2 × 108. It can be seen that all energy terms
start their rapid growth at t ∼ 60, approximately 3 min after instability onset. After
t = 63 (∼105 min), thermal buoyancy work and the shear work predominate; thermal
buoyancy drives the motion that is dissipated by shear. The solute buoyancy term
reduces essentially to zero at t = 64 (∼107 min), when the fluid becomes well mixed.
The kinetic energy term oscillates about zero, and there is no net increase in the
mean.
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Figure 19. Development of all the energy terms into the final thermal convection state
under steady gravity. For clearer presentation, the kinetic energy (pressure work) term is
displaced upward (downward) by 2 × 108. (i) Thermal work; (ii) D(KE)/Dt; (iii) solutal work;
(iv) pressure work; (v) shear work.

6.2. Ideal gravity modulation

When the fluid layer is under gravity modulation, the pressure work term plays a
more important role than in the steady-gravity case. The results of the calculation
with ideal gravity modulation are shown in figure 20(a), with the effect of gravity
modulation clearly shown. A small-magnitude oscillation at the modulation frequency
is superposed onto all the growth curves of the work terms. The growth of the
buoyancy and shear work terms is similar to the steady gravity case. However,
the pressure work term, which is generated by the unsteady motion, is oscillating
at the modulation frequency, with the magnitude growing within an envelop that
is oscillating at twice the onset frequency. In fact, it is the major contributor to
the D(KE)/Dt term. This remains the case when the flow is in the fully thermal
convection state at 66 � t � 66.6 (figure 20b). Now the solutal work is essentially zero,
and all terms are oscillating at the modulation frequency. The thermal buoyancy work
is dissipated by shear work; pressure work is sustaining the changes in the kinetic
energy.

7. Internal wave mode of instability
Since our experiments were designed to be stable with respect to the internal

wave instability, we explore the possibility of the onset of such instability using
our simulation code. First, we consider the same solute-stratified fluid as in the
experimental case under ideal gravity modulation without any heating. Then, we
impose heating from below to study the possible interactions between the internal
wave mode of instability and the double-diffusive instability.
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Figure 20. Growth of the work components contributing to the time rate of change of kinetic
energy at (a) instability onset, and (b) final thermal convection state under ideal gravity
modulation. (i) to (v) are the same as in figure 19.

7.1. Solute-stratified layer

We first set the modulation magnitude to be g1 = 0.41, the experimental value, and
carry out computations over a range of frequencies starting at ωm = 0. No instability
is found up to ωm =628.3 (1 Hz). When the modulation magnitude is increased to
g1 = 0.75, internal wave instability is found over a range of frequencies up to ∼2N . The
results are presented in figure 21(a), showing an instability island in the frequency
range 220 � ωm � 430 (0.35–0.68 Hz). Within this frequency range, instability onset
occurs almost immediately after gravity modulation is imposed. The fluid motion is
oscillatory in the subharmonic mode, and its magnitude grows with time. Since the
solute gradient is being continuously eroded by diffusion enhanced by the oscillatory
motion, the magnitude of the instability motion attains a maximum value and then
starts to decrease. Eventually, the gradient becomes too small to sustain the instability
motion and the layer becomes stable. In the critical frequency range, the time interval
within which instability exists decreases with increasing modulation frequency. We
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Figure 21. (a) Stability characteristics of a fluid layer with a stable solute distribution of the
initial state under ideal gravity modulation with g1 = 0.75 showing an island of internal wave
instability. (b) The same layer with heating from below, RaT = 161 560, showing the interaction
between internal wave and double-diffusive instabilities at 180 � ωm � 300, and the resonant
instability of the double-diffusive layer at ωm � 120; �, internal wave; �, double-diffusive
instability.

note here that after the fluid layer regains stability, the mean solute gradient of the
fluid is lower than an undisturbed layer at the same time. This type of instability is
similar to those demonstrated by Gershuni et al. (1970) and Gresho & Sani (1970)
for a fluid layer heated from above under gravity modulation.

7.2. Solute-stratified layer with heating from below

Now we subject the solute-stratified layer to an adverse temperature gradient of
RaT =161 560, the experimental value. Since the overall stable density gradient is
reduced by heating, it is anticipated that the instability island will be reduced in area.
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Figure 22. Sequence of streamline patterns within the instability island shown in figure 21(b)
at ωm = 240.1. 1, t = 1.0, �ψ = ±0.0125; 2, t = 2.0, �ψ = ±0.0313; 3, t = 3.0, �ψ = ±1.125; 4,
t =4.0, �ψ = ±1.125; 5, t = 6.0, �ψ = ±1.125; 6, t = 8.0, �ψ = ±0.50; 7, t =9.0, �ψ = ±0.25;
8, t = 10.0, �ψ = ±0.025; 9, t = 11.0, �ψ = ±0.0125.

As shown in figure 21(b), the critical frequency range is reduced approximately by half
to 180 � ωm � 300, and the unstable time interval only extends to t = 30. Beyond the
critical time period, the fluid layer reverts back to the stable state. It remains stable
until the solute gradient becomes too low to resist the adverse effects of the thermal
gradient and causes the onset of double-diffusive instability at t ≈ 60. In the figure, this
stability boundary is marked by open circles. In the range of modulation frequency
180 � ωm � 300, owing to the additional reduction of the stable solutal gradient by
the internal wave mode of instability, the onset of double-diffusive instability occurs
slightly earlier than it would otherwise. The onset motion still consists of two rows
of vortices similar to those shown in figure 16.

The fluid motion within the internal wave instability region is illustrated by a
sequence of streamline contours at ωm = 240.1 and 1 � t � 11 in figure 22. It shows
that the instability motion consists of a single row of oscillating vortices whose strength
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Figure 23. Displacement of concentration contours by the cyclic internal wave motions of
the instability in the example shown in figure 22. 1, t = 3.075, 2, t = 3.085, 3, t = 3.095, 4,
t = 3.100, 5, t = 3.105, 6, t = 3.115, 7, t = 3.125.

first increases then decreases with time as the solute gradient becomes weaker and
eventually returns to the quiescent state. The internal wave nature of this unstable
motion can be illustrated clearly by setting a horizontal dyeline in the experimental
tank, or by the lines of constant solute concentration from the simulation results over
a cycle of oscillation. A sequence of seven plots of such concentration contours over
a cycle, 3.075 � t � 3.125, is presented in figure 23. The cyclic wave motion is clearly
exhibited. These waves will persist, but with diminishing amplitude as t approaches
11 and then vanish completely for t > 11 as the fluid layer becomes stable. In the
subsequent double-diffusive instability, wave motion will first appear immediately
after onset, but these waves will break when the solute gradient is destroyed by the
mixing process.

Figure 21(b) shows that there is another larger reduction in the time of onset
of the double-diffusive instability at low modulation frequencies, ωm � 120. This is
a manifestation of the resonant instability effect of a double-diffusive layer under
gravity modulation shown by Saunders et al. (1992). They showed that the resonant
bands centre at modulation frequencies ωm ≈ 2σi/m, where m is an integer and σi is
the critical onset frequency at steady gravity. The fundamental resonant band, m =1,
is in the subharmonic mode and effects the most destabilization. According to linear
stability analysis for a sinusoidal solute distribution (see figure 13), the oscillation
frequency at the critical state is σi = 27.1. Figure 21(b) shows that the destabilized
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region as indicated by the reduction in the time of instability onset centres at ωm ≈ 2σi .
When the modulation amplitude is increased to g1 = 1.0, the internal wave mode of
instability is enlarged to such an extent that the stability boundaries of the two modes
intersect.

8. Conclusions
We have successfully devised an experimental method to study the instability onset

process in a horizontal stratified fluid layer enclosed in a rigid tank being heated
from below both under steady gravity and gravity modulation. We formulated a
two-dimensional numerical method to simulate the behaviour of the fluid layer under
the experimental test conditions. A linear stability analysis was also applied to the
same problem with a nonlinear solute distribution. From the results of these studies,
the following conclusions can be drawn.

1. Under steady gravity, the predictions of the critical conditions at instability onset
based on the linear stability theory and the two-dimensional simulations agree very
well with the experimental results, with relative errors of less than 3 %. The earlier
experimental results of Shirtcliff (1967, 1969) and Wright & Loehrke (1976) also
show good agreement with linear stability theory. The nonlinear evolution of the fluid
motion from the instability onset to the final thermal convection state as predicted
by nonlinear simulations is very similar to that observed in the experiments.

2. For ideal sinusoidal variations of the gravity at 1 Hz with amplitude of 0.41g,
both linear theory and two-dimensional simulations predict no change in the critical
conditions for instability onset. The nonlinear evolution of the instability motion as
predicted by two-dimensional simulations is similar to that under steady gravity.

3. Under the actual gravity modulation as generated by the oscillating platform,
both the experiments and the two-dimensional simulations show that the fluid layer
becomes less stable with increases in the critical solute Rayleigh number, RaS , and
the oscillation frequency at onset, fonset , from their respective values at steady gravity.
However, the increases in the simulation values are modest as compared to the
increases obtained in the experiments. Simulation results show an increase of 1.4 %
in RaS and 8.9 % infonset . In the experiments, the corresponding values are 8.4 % and
32.6 %.

4. Analysis of the work components contributing to the time rate of change of
the kinetic energy shows that during the onset process, all terms exhibit growing
oscillations at twice the onset frequency. Under steady gravity, the changes in the
kinetic energy are mainly due to the difference between the net buoyancy work and
the dissipation resulting from the shear work. The contribution of the pressure work
is negligible. Under ideal gravity modulation, an oscillation of small amplitude at the
modulation frequency is superposed on the growth curves. In this case, the changes
in the kinetic energy are mainly due to the work of the unsteady pressure.

5. The possibility of encountering an internal wave mode of instability in an
experimental set-up such as ours has been demonstrated with our two-dimensional
simulation code. For the experimental solute-stratified fluid layer without heating, such
instability can be excited at a lower modulation frequency (0.35–0.68 Hz) and higher
amplitude (0.75g) than those in the experiment. After onset, the instability motion
first grows in strength and then slowly decays as the background solute gradient is
diminishing. The wave nature of the instability is illustrated by the motion of the
constant solute contours over a cycle of oscillation. Eventually, the wave subsides and
the layer returns to the stable state. The instability is confined within a closed region
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in the time-frequency domain. When a destabilizing temperature gradient is imposed
on the layer, the occurrence of internal waves destabilizes the fluid layer with respect
to the double-diffusive instabilities.
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